19 research outputs found

    Pressurized Lunar Rover

    Get PDF
    The pressurized lunar rover (PLR) consists of a 7 m long, 3 m diameter cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, directional lighting, cameras, and equipment for exploratory experiments. The PLR shell is constructed of a layered carbon-fiber/foam composite. The rover has six 1.5 m diameter wheels on the main body and two 1.5 m diameter wheels on the trailer. The wheels are constructed of composites and flex to increase traction and shock absorption. The wheels are each attached to a double A-arm aluminum suspension, which allows each wheel 1 m of vertical motion. In conjunction with a 0.75 m ground clearance, the suspension aids the rover in negotiating the uneven lunar terrain. The 15 N-m torque brushless electric motors are mounted with harmonic drive units inside each of the wheels. The rover is steered by electrically varying the speeds of the wheels on either side of the rover. The PLR trailer contains a radiosotope thermoelectric generator providing 6.7 kW. A secondary back-up energy storage system for short-term high-power needs is provided by a bank of batteries. The trailer can be detached to facilitate docking of the main body with the lunar base via an airlock located in the rear of the PLR. The airlock is also used for EVA operation during missions. Life support is a partly regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center. The water absorbs any damaging radiation, allowing the command center to be used as a safe haven during solar flares. Guidance, navigation, and control are supplied by a strapdown inertial measurement unit that works with the on-board computer. Star mappers provide periodic error correction. The PLR is capable of voice, video, and data transmission. It is equipped with two 5 W X-band transponder, allowing simultaneous transmission and reception. An S-band transponder is used to communicate with the crew during EVA. The PLR has a total mass of 6197 kg. It has a nominal speed of 10 km/hr and a top speed of 18 km/hr. The rover is capable of towing 3 metric tons (in addition to the RTG trailer)

    Pressurized Lunar Rover (PLR)

    Get PDF
    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double Ackermann steering. The primary power of 8 kW is supplied by a dynamic isotope system using a closed Brayton cycle with a xenon-hydrogen mixture as the working fluid. A sodium-sulfur battery serves as the secondary power source. Excess heat produced by the primary power system and other rover systems is rejected by radiators located on the top of the rear cylinder. The total mass of the PLR 2 is 7015 kg. Simplicity and low total weight have been the driving principles behind the design of PLR 1. The overall configuration consists of a 7-m-long, 3-m-diameter cylindrical main vehicle and a two-wheeled trailer. The cylinder of the main body is capped by eight-section, faceted, semi-hemispherical ends. The trailer contains the RTG power source and is not pressurized. The shell of the main body is constructed of a layered carbon fiber/foam/Kevlar sandwich structure. Included in the shell is a layer of water for radiation protection. The layer of water extends from the front of the rover over the crew compartment and creates a safe haven for the crew during a solar flare-up. The carbon fiber provides the majority of the strength and stiffness and the Kevlar provides protection from micrometeoroids. The Kevlar is covered with a gold foil and multi-layer insulation (MLI) to reduce radiation degradation and heat transfer through the wall. A thin thermoplastic layer seals the fiber and provides additional strength

    Fifteen-minute consultation: An evidence-based approach to research without prior consent (deferred consent) in neonatal and paediatric critical care trials

    Get PDF
    What do we mean by research without prior consent (deferred consent)? Emergency research with critically unwell children is vital to make sure that the most ill and injured children benefit from evidence-based healthcare.1 Ethical guidance require that consent be sought from parents (or legal representatives) on behalf of their children2 before research is initiated, yet concerns about problems in seeking parents’ consent when their child is critically ill have been a significant barrier to conducting clinical trials.3 ,4 Taking time out to seek informed consent before starting treatment will often be difficult to justify as delaying any intervention in an emergency could diminish a child's chances of recovery. Parents will usually be highly distressed in a critical care situation, and many will struggle to make an informed decision about research in the limited time available. Many countries have legislated to permit variations to informed consent and allow progress in research to develop critical care treatments.5–7 While the details vary, a common feature is that informed consent is not requested before the patient receives the intervention being researched.8 In the USA, the Food and Drug Administration (FDA) Exception from Informed Consent (EFIC) essentially ‘waives’ informed consent, although practitioners must show that they have attempted to contact legal representatives and tried to provide the opportunity to ‘opt out’ of a trial.5 ,9 The FDA's detailed guidance aims to assist researchers in implementing EFIC,10 ,11 although the accompanying public consultation requirements have led to varied practice and costly delays in setting up trialsCATCH was funded by the National Institute for Health Research Health Technology Assessment (NIHR HTA) programme (project number 08/13/47). CONNECTwas funded by Wellcome Trust (WT095874MF) and supported by the MRC Network of Hubs for Trials Methodology Research (MR/L004933/1- R/N42)

    Habitat quality, conductance, and connectivity for puma movement across Arizona

    No full text
    The data file contains raster datasets in geotiff format representing: 1) puma habitat quality for movement, 2) conductance of the landscape to puma movement, and 3) connectivity for puma across the state of Arizona. Each dataset is accompanied by a layer file providing symbology matching the figures in the accompanying publication

    Data from: Modeling connectivity to identify current and future anthropogenic barriers to movement of large carnivores: a case study in the American Southwest

    No full text
    This study sought to identify critical areas for puma (Puma concolor) movement across the state of Arizona in the American Southwest and to identify those most likely to be impacted by current and future human land uses, particularly expanding urban development and associated increases in traffic volume. Human populations in this region are expanding rapidly, with the potential for urban centers and busy roads to increasingly act as barriers to demographic and genetic connectivity of large-bodied, wide-ranging carnivores such as pumas, whose long-distance movements are likely to bring them into contact with human land uses and whose low tolerance both for and from humans may put them at risk unless opportunities for safe passage through or around human-modified landscapes are present. Brownian bridge movement models based on global positioning system collar data collected during bouts of active movement and linear mixed models were used to model habitat quality for puma movement, then a wall-to-wall application of circuit theory models was used to produce a continuous statewide estimate of connectivity for puma movement and to identify pinch points, or bottlenecks, that may be most at risk of impacts from current and future traffic volume and expanding development. Rugged, shrub- and scrub-dominated regions were highlighted as those offering high quality movement habitat for pumas, and pinch points with the greatest potential impacts from expanding development and traffic, though widely distributed, were particularly prominent to the north and east of the city of Phoenix and along interstate highways in the western portion of the state. These pinch points likely constitute important conservation opportunities, where barriers to movement may cause disproportionate loss of connectivity, but also where actions such as placement of wildlife crossing structures or conservation easements could enhance connectivity and prevent detrimental impacts before they occur

    Ajoene, a sulfur rich molecule from garlic, inhibits genes controlled by quorum sensing

    Full text link
    In relation to emerging multiresistant bacteria, development of antimicrobials and new treatment strategies of infections should be expected to become a high priority research area. Quorum Sensing (QS), a communication system used by pathogenic bacteria like Pseudomonas aeruginosa to synchronise the expression of specific genes involved in pathogenicity, is a possible drug target. Previous in vitro and in vivo studies revealed a significant inhibition of P. aeruginosa QS by crude garlic extract. By bioassay-guided fractionation of garlic extracts we determined the primary QS inhibitor present in garlic as ajoene, a sulfur-containing compound with potential as an antipathogenic drug. By comprehensive in vitro and in vivo studies of the effect of synthetic ajoene towards P. aeruginosa was elucidated. DNA microarray studies of ajoene treated P. aeruginosa cultures revealed a concentration dependent attenuation of a few, but central QS controlled virulence factors including rhamnolipid. Furthermore, ajoene treatment of in vitro biofilms demonstrated a clear synergistic, antimicrobial effect with tobramycin on biofilm killing and a cease in lytic necrosis of polymorphonuclear leukocytes. Furthermore, in a pulmonary infectious mouse model a significant clearing of infecting P. aeruginosa was detected in ajoene-treated mice compared to a non-treated control group. This study adds to the list of examples demonstrating the potential of QS interfering compounds in the treatment of bacterial infections
    corecore